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1. INTRODUCTION

Indeterminate factors often appear in engineering structures. In fact, a mathematical model
is just an abstract representation of a real structure, which can never be exactly the same as
the real structure. For instance, measurements cannot be absolutely accurate,
manufacturing processes cannot be perfect, mechanical properties of materials cannot be
exactly identi"ed, and so forth. These indeterminate factors are often modelled as random
variables. Structural models with random variables as their parameters are often called
random structures. Hence, there is a need for statistical analyses of responses of random
structures. On the other hand, indeterminacy also exists in excitations, especially in
earthquake excitations. Therefore, earthquake excitations are often modelled as random
processes, mostly evolutionary ones.

The mathematical tool for solving response problems of random structures is
quite di$cult and far from maturity, especially when random dynamic loads are
involved. Therefore, most published works on random vibrations of random structures
are restricted to the statistical properties of eigenvalue problems or responses to static
loads [1].

However, one of the important features of a random structure is that its sample system is
a deterministic one, whether time-invariant or time-variant. The uni"ed approach to
evolutionary random response problems, suggested by Fang et al. [2, 3], is applicable to
these sample systems, too. While studying the evolutionary random response problems of
random structures through Monte-Carlo simulations, the computational e!ort can be
greatly reduced by applying the uni"ed approach to the sample systems. In what follows,
the ways to deal with evolutionary random response problems of a random structure under
earthquake excitations are explained.
22-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.
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2. A UNIFIED APPROACH TO EVOLUTIONARY RANDOM RESPONSE PROBLEMS

The di!erential equation of the response of a discrete random structure, in general, may be
expressed as follows:

Mx( #CxR #Kx"bf (t), (1)

where the response x(t) is an n-vector with real, time-function elements;M, C, K are n�n
matrices with random variable elements, among which the sample matrices of M are
supposed to be positive-de"nite and statistical properties of all the random elements are
given; b is an n-vector with real constant elements; and f (t) is a scalar excitation, either
a deterministic or a random one.

Since a sample system of a random structure is a deterministic one, for the time being
supposed to be time-invariant, the response of a sample system under zero initial conditions
may be expressed as

x(t)"�
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h(u)bf (t!u)du. (2)

When the excitation f (t) is deterministic, so is the response x (t). The cross product of x (t)
is simply
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�

�
�

�

�

h(u)bf (t!u) f (t!v)b�h�(v) dudv . (3)

Now suppose that the excitation f (t) is an evolutionary random process with a zero mean
and an evolutionary covariance function, which can be expressed as
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where S(�) is the power spectral density of a stationary random process, and A(�, t) is
a deterministic modulating function, which regulates the stationary random process into
the evolutionary random excitation f (t). Since the response of a sample system to a sample
excitation under zero initial conditions still takes the form of equation (2), the mean
response E[x (t)] is a zero vector. Meanwhile, by equation (4), the covariance matrix of the
evolutionary random response of a sample system should be
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G(�, t)G� �(�, t)S(�)d� (5)

where

G(�, t)"�
�

�

h (u)bA(�, t!u)e��������du . (6)

It is easy to see from equation (2) that G(�, t) is just the deterministic transient response of
the sample system under zero initial conditions to a deterministic excitation bA(�, t)e����

with � as a "xed parameter. For any deterministic linear system, whether time-invariant or
time-variant, it is easy to obtain those deterministic transient responses for di!erent �'s by
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any existing e!ective numerical method, such as the Runge}Kutta method. Once all the
G(�, t)'s are obtained, the covariance matrix C

�
(t, t) is at hand.

As long as the statistical properties of the random structure are independent of the
statistical properties of the random excitations, the covariance matrix of the evolutionary
random response of the random structure can be obtained by

E
�
[C

�
(t, t)]"E

���
�

��

G(�, t)G� � (�, t)S (�)d�� (7)

where E
�
means taking the ensemble average with respect to the random structure only.

A straightforward method suitable for this job is the Monte-Carlo method.
In case the random parameters of a random structure can be expressed as the series form

of a certain small parameter, there is an alternative method, via the perturbation technique
to deal with the response problems of a random structure. By the perturbation technique
[4], the response problem of a random structure subject to external excitations can be
reduced to a series of problems of a deterministic structure subject to successively derived
random excitations. Then, the above-stated uni"ed approach to evolutionary random
response problems can give full play to its e!ectiveness hereafter.

3. EVOLUTIONARY RANDOM RESPONSE OF SHEAR BEAM UNDER
EARTHQUAKE EXCITATION

Consider a uniform shear beam with length ¸, shear sti!ness k, damping coe$cient �, and
mass per unit length � as shown in Figure 1. The beam is "xed at the base with co-ordinate
x"0 and is free at the end x"¸. When the base is given an arbitrary transient acceleration
y(
�
(t), the relative transverse displacement y (x, t) at section x is governed by the following

partial di!erential equation:
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where the wave speed �"(k/�)�
� and the reduced damping coe$cient c"�/�. The
boundary conditions are y"0, when x"0; and �y/�x"0 when x " ¸. In the following
paragraphs, the section co-ordinate x is replaced by the relative co-ordinate z" x / ¸,
Figure 1. A uniform shear beam model.
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which may be convenient for comparison. Then, equation (8) reduces to
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and the boundary conditions reduce to y"0, when z"0; and �y/�z"0, when z"1.
While looking for a modal solution as a sum of the products of the normal modes �

�
(z)

and normal co-ordinates >
�
(t), we can put
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The normal modes for the shear beam, �
�
(z)"sin(¸/�) �

�
z, i"1,2,2, with the natural

frequencies �
�
"(2i!1) ��/2¸ , satisfy the free vibration relations and the required

orthogonality conditions. Then, by using the orthogonal conditions for normal modes,
equation (9) can be "nally reduced into a set of the second order ordinary di!erential
equations for the independent modal systems:
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The particular solutions of equation (11) for zero initial conditions can be obtained by
Duhamel integrals
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where h
�
(u) is the impulse response of the ith modal system. Correspondingly, the relative

transverse displacement y(z, t) for a sample beam is
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The ground acceleration, y(
�
(t), takes the evolutionary random excitation model for the

Niigata earthquake. Suppose that the mean value of the random excitation is zero, and the
evolutionary power spectrum is expressed as [5]
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Figure 2. Time-dependent variance of ground acceleration, �
�
(t).
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and

�(t)"�
0)64 0)t)4)5 s,

1)25(t!4)5)	!1)875(t!4)5)�#0)64 4)5)t!)5)5 s,

0)015 t)5)5 s,

�(t)"�
15)56 rad/s, 0)t)4)5 s,

27)12(t!4)5)	!40)68(t!4)5)�#15)56 rad/s, 4)5)t)5)5 s,

2 rad/s, t*5)5 s .

Taking S
�
"2 cm�/s	, a"0)25/s��, and b"0)5/s��, the time-dependent variance of

ground acceleration, �
�
(t), is plotted in Figure 2.

Then, the mean square evolutionary random response of a sample beam at section z can
be obtained as
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where

G
�
(�, t)"�
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A(�, t!u)e�������h
�
(u)du .

Once all the G
�
(�, t)'s are found, the mean square response E[ y� (z, t)] is at hand. Since the

statistical properties of the random structure are supposed to be independent of those of the
random excitation, the mean square evolutionary random response of the random structure
can be obtained by further taking the ensemble average with respect to the random
structure.

In the following calculation, the parameters �, k and � are supposed to be deterministic
and are given as

�"1�10 kg/m, k"2�10� kg m/s�, �"3)125�10� kg m/s

and the only indeterminate parameter of the structure is the length ¸, supposed to be
a random variable with truncated normal distribution, ¸3[97, 103] m, and with its mean
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Figure 3. Mean square responses of sample beams. } } } } A; ** B.
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Figure 4. Mean square responses of the random beam. } } } } A; ** B; } )} ) } ) C.
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value and standard deviation, respectively, as

E[¸]"100 m, [¸]"1 m.

Note that in equation (15), the mean square evolutionary random response is expressed in
the form of a sum of in"nite terms. However, the only possible way in practical computation
is to truncate the sum by "nite terms. By the de"nition in equation (12), the 


�
's in equation

(15) decrease rapidly with the increase of i. It is found in calculation that the "nal results are
accurate enough by preserving only the "rst "ve terms in the summation of modal
responses.

Some of the numerical results by Monte}Carlo simulations are shown in Figures 3 and 4.
In Figure 3, the mean square evolutionary random responses at di!erent sections for
a sample beam with length ¸"100 m are given, where curve A for beam section z"0)5,
and curve B for beam section z"1. In Figure 4, the ensemble mean square evolutionary
random response of the random beam at section z"1 is given by the solid curve B. For
comparison, the mean square evolutionary random responses at section z"1 for two
extreme sample beams with ¸"97 m and 103 m are also given in Figure 4 by curves A and
C respectively. It can be seen that although the maximum relative deviation of beam length
is only 3%, the maximum relative deviation of the mean square response is about 12%.

4. CONCLUSIONS

(1) The uni"ed approach to evolutionary random response problems can be applied to
random structures as well. Numerical examples show that the computational e!ort for
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Monte}Carlo simulation analysis of random structural responses can be greatly reduced by
combining with the uni"ed approach.

(2) Although illustrated by a relatively simple random beam example, the method can
also be applied to more complicated random structures with multiple random paramters, or
even with their sample structures as deterministic time-variant systems.

(3) The uni"ed approach can be applied to random response problems of random
structures in an alternative way, namely to combine the approach with perturbation
techniques. The related results will be reported later.

(4) From the derivation, one can see that the uni"ed approach to evolutionary random
response problems is completely based on the classical random vibration theory. Hence, it is
better to say that the uni"ed approach is simply a logical outcome of better understanding
of the classical random vibration theory rather than a new method. However, it is really
a very e$cient and useful approach to evolutionary random response problems, without
resorting to some advanced and complicated mathematical tools.
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